En un giro evolutivo notable, un equipo de científicos internacionales ha descubierto que las serpientes marinas tienen una visión cromática mejorada debido a su traslado a hábitats marinos más brillantes y coloridos.
Los científicos han descubierto que las serpientes marinas tienen una mejor visión del color debido a que viven en ambientes marinos vibrantes.
Un equipo internacional de científicos que estudian la historia genética de las serpientes marinas ha descubierto que[{» attribute=»»>species has enhanced their color vision in response to living in brighter and more colorful marine environments.
“Our research has found that the annulated sea snake possesses four intact copies of the opsin gene SWS1,” said PhD candidate Isaac Rossetto, from the University of Adelaide’s School of Biological Sciences who led the study.
“Two of these genes have the ancestral ultraviolet sensitivity, and two have evolved a new sensitivity to the longer wavelengths that dominate ocean habitats.
“The earliest snakes lost much of their ability to see color due to their dim-light burrowing lifestyle.
“However, their sea snake descendants now occupy brighter and more spectrally complex marine environments. We believe that recent gene duplications have dramatically expanded the range of colors sea snakes can see.”
The team examined published reference genomes to examine visual opsin genes across five ecologically distinct species of elapid snakes. They looked at the gene data of Hydrophis cyanocinctus, or the annulated sea snake, a species of venomous snake found in tropical and subtropical regions of Australia and Asia.
The team included scientists from The University of Adelaide, The University of Plymouth, and The Vietnamese Academy of Science and Technology. They published their findings in the journal Genome Biology and Evolution.
Hydrophis cyanocinctus. Credit: Parviz Ghezellou
Many animals have lost opsins throughout their genealogical history as they’ve adapted to new habitats, but it is very rare to see opsin gains.
“Humans have a similarly expanded sensitivity to colors, while cats and dogs are partially color-blind much like those early snakes,” said Mr Rossetto.
“It’s quite unique and interesting that these snakes appear to be gaining and diversifying their opsins, when other land-to-sea transitioned animals have done the opposite.”
“Basically, there’s only one other case within reptiles at all where we think this has happened.”
Newly gained color-vision opsins have also been recorded in the semi-aquatic Helicops snake.
Evidence of color vision in Hydrophis snakes was first published in 2020, but this new research shows it is the result of gene duplication rather than gene polymorphism. This means expanded color vision is more common among the species than first thought.
“With a polymorphism, it’s a bit of a lottery – only some individuals would have that extended color sensitivity. But now we know that there are multiple gene copies which have diverged, so color vision is expected to be seen in all members of these species,” said Mr. Rossetto.
Reference: “Functional Duplication of the Short-Wavelength-Sensitive Opsin in Sea Snakes: Evidence for Reexpanded Color Sensitivity Following Ancestral Regression” by Isaac H Rossetto, Kate L Sanders, Bruno F Simões, Nguyen Van Cao and Alastair J Ludington, 12 July 2023, Genome Biology and Evolution.
DOI: 10.1093/gbe/evad107
Funding: Australian Research Council Discovery Project
«Alborotador. Amante de la cerveza. Total aficionado al alcohol. Sutilmente encantador adicto a los zombis. Ninja de twitter de toda la vida».
More Stories
Estudio: la actividad de las proteínas cancerosas aumenta el desarrollo del cáncer de próstata
Un nuevo material luminoso puede ser la solución al deterioro de las infraestructuras
Las vesículas extracelulares son prometedoras en el tratamiento de lesiones pulmonares y cerebrales durante el nacimiento